Skip to main content

Some new concepts in 11gR2 Rac

Oracle clusterware and ASM now are installed into the Same Oracle Home, and is now called the grid infrastructure install.

Raw devices are no longer supported for use for anything (Read oracle cluster registry, voting disk, asm disks), for new installs.

OCR and Voting disk can now be stored in ASM, or a certified cluster file system.

The redundancy level of your ASM diskgroup (That you choose to place voting disk on) determines the number of voting disks you can have.
You can place

Only One voting disk on an ASM diskgroup configured as external redundancy
Only Three voting disks on an ASM diskgroup configured as normal redundancy
Only Five voting disks on an ASM diskgroup configured as high redundancy


The contents of the voting disks are automatically backed up into the OCR

ACFS (Asm cluster file system) is only supported on Oracle Enterprise Linux 5 (And RHEL5), not on OEL4.

There is a new service called cluster time synchronization service that can keep the clocks on all the servers in the cluster synchronized (In case you dont have network time protocol (ntp) configured)

Single Client Access Name (SCAN), is a hostname in the DNS server that will resolve to 3 (or at least one) ip addresses in your public network. This hostname is to be used by client applications to connect to the database (As opposed to the vip hostnames you were using in 10g and 11gr1). SCAN provides location independence to the client connections connecting to the database. SCAN makes node additions and removals transparent to the client application (meaning you dont have to edit your tnsnames.ora entries every time you add or remove a node from the cluster).

Oracle Grid Naming Service (GNS), provides a mechanism to make the allocation and removal of VIP addresses a dynamic process (Using dynamic Ip addresses).

Intelligent Platform Management Interface (IPMI) integration, provides a new mechanism to fence server’s in the cluster, when the server is not responding.

Comments

Popular posts from this blog

How are vector databases used?

  Vector Databases Usage: Typically used for vector search use cases such as visual, semantic, and multimodal search. More recently, they are paired with generative AI text models for conversational search experiences. Development Process: Begins with building an embedding model designed to encode a corpus (e.g., product images) into vectors. The data import process is referred to as data hydration. Application Development: Application developers utilize the database to search for similar products. This involves encoding a product image and using the vector to query for similar images. k-Nearest Neighbor (k-NN) Indexes: Within the model, k-nearest neighbor (k-NN) indexes facilitate efficient retrieval of vectors. A distance function like cosine is applied to rank results by similarity.

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat <- colindex="colIndex," endrow="23," file="NGAP.xlsx" header="TRUE)</p" read.xlsx="" sheetindex="1," startrow="18,"> Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip&

Feature Engineering - What and Why

Feature engineering is a crucial step in the machine learning pipeline where you create new, meaningful features or transform existing features to improve the performance of your predictive models. It involves selecting, modifying, or creating features from your raw data to make it more suitable for machine learning algorithms. Here's a more detailed overview of feature engineering: Why Feature Engineering? Feature engineering is essential for several reasons: Improving Model Performance: Well-engineered features can significantly boost the predictive power of your machine learning models. Handling Raw Data: Raw data often contains noise, missing values, and irrelevant information. Feature engineering helps in cleaning and preparing the data for analysis. Capturing Domain Knowledge: Domain-specific insights can be incorporated into feature creation to make the model more representative of the problem. Common Techniques and Strategies: 1. Feature Extraction: Transforming raw data