The database architecture called shared-disk, which eliminates the need to partition data, is ideal for cloud databases. Shared-disk databases allow clusters of low-cost servers to use a single collection of data, typically served up by a Storage Area Network (SAN) or Network Attached Storage (NAS). All of the data is available to all of the servers, there is no partitioning of the data. As a result, if you are using two servers, and your query takes .5 seconds, you can dynamically add another server and the same query might now take .35 seconds. In other words, shared-disk databases support elastic scalability.
We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...
Comments