Skip to main content

What is Access keys - access key ID and secret access key in AWS?


Access keys consist of an access key ID (like AKIAIOSFODNN7EXAMPLE) and a secret access key (like wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). You use access keys to sign programmatic requests that you make to AWS whether you're using the AWS SDK, REST, or Query APIs. The AWS SDKs use your access keys (which you store as part of the application) to sign requests for you so that you don't have to handle the signing process. If you're unable to use the AWS SDK, you can sign requests manually.

Access keys are also used with command line interfaces (CLIs). When you use a CLI, the commands that you issue are signed by your access keys, which you can either pass with the command or store as configuration settings on your computer.

You can also create and use temporary access keys, known as temporary security credentials. In addition to the access key ID and secret access key, temporary security credentials include a security token that you must submit to AWS when you use temporary security credentials. The advantage of temporary security credentials is that they have a limited life (after they expire, they're no longer valid), so you can use them in less secure environments or distribute them to grant users temporary access to resources in your AWS account. For example, you can use temporary security credentials to grant entities from other AWS accounts access to resources in your AWS account (cross-account access) or grant users who don't have AWS security credentials access to resources in your AWS account (federation).

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...