Skip to main content

Sticky Session




Sticky session means that when a request comes into a site from a client all further requests go to the same server initial client request accessed. I believe that session affinity is a synonym for sticky session.

Both mean that when coming in to the load balancer, the request will be directed to the server that served the first request (and has the session).

The problem is "sticky session" where each user is assigned to a single server and his/her state data is contained on that server exclusively throughout the duration of the session.

Pros
  • it's easy-- no app changes required.
  • better utilizes local RAM caches (e.g. look up user profile once, cache it, and can re-use it on subsequent visits from same user)
Cons
·  if the server goes down, session is lost. (note that this is a con of storing session info locally on the web server-- not of sticky sessions per se). if what's in the session is really important to the user (e.g. a draft email) or to the site (e.g. a shopping cart) then losing one of your servers can be very painful.
·  depending on "sticky" implementation in your load balancer, may direct unequal load to some servers vs. others
·  bringing a new server online doesn't immediately give the new server lots of load-- if you have a dynamic load-balancing system to deal with spikes, stickiness may slow your ability to respond quickly to a spike. That said, this is somewhat of a corner case and really only applies to very large and sophisticated sites.

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...