Skip to main content

How to Install telnet on Linux CLI instance

# yum install telnet
Loaded plugins: priorities, update-motd, upgrade-helper
amzn-main/latest                                                                                                                                          | 2.1 kB     00:00
amzn-updates/latest                                                                                                                                       | 2.3 kB     00:00
Resolving Dependencies
--> Running transaction check
---> Package telnet.x86_64 1:0.17-47.7.amzn1 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

=================================================================================================================================================================================
 Package                                Arch                                   Version                                           Repository                                 Size
=================================================================================================================================================================================
Installing:
 telnet                                 x86_64                                 1:0.17-47.7.amzn1                                 amzn-main                                  63 k

Transaction Summary
=================================================================================================================================================================================
Install  1 Package

Total download size: 63 k
Installed size: 109 k
Is this ok [y/d/N]: y
Downloading packages:
telnet-0.17-47.7.amzn1.x86_64.rpm                                                                                                                         |  63 kB     00:00
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
  Installing : 1:telnet-0.17-47.7.amzn1.x86_64                                                                                                                               1/1
  Verifying  : 1:telnet-0.17-47.7.amzn1.x86_64                                                                                                                               1/1

Installed:
  telnet.x86_64 1:0.17-47.7.amzn1

Complete!

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...