Skip to main content

How to Retrieving Security Credentials from Instance Metadata

Use Case: 

Suppose you have external customers, vendors who needs to access some information of yours AWS environment. You want to give them read only access to s3 bucket.

The external users are supposed to use Rest API calls to access your s3 bucket and will require AWS Access Key and Secure Access Key.

If you provide external users and later forget to retrieve or change that one, they may have permanent access to your environment.

You want to give them temporary access which can lasts upto 12 hours.

Solution: 


  1. Create a IAM Role 
  2. Attach the IAM role to an EC2 instance
  3. Share the .pem / .ppk file to access the EC2 instance
  4. External user will login to EC2 user
  5. run the command  
$curl http://169.254.169.254/latest/meta-data/iam/security-credentials/iam-role


Will get following

  • AccessKeyId
  • SecretAccessKey
  • Token

And now they can use Rest API call with above details.



Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

How are vector databases used?

  Vector Databases Usage: Typically used for vector search use cases such as visual, semantic, and multimodal search. More recently, they are paired with generative AI text models for conversational search experiences. Development Process: Begins with building an embedding model designed to encode a corpus (e.g., product images) into vectors. The data import process is referred to as data hydration. Application Development: Application developers utilize the database to search for similar products. This involves encoding a product image and using the vector to query for similar images. k-Nearest Neighbor (k-NN) Indexes: Within the model, k-nearest neighbor (k-NN) indexes facilitate efficient retrieval of vectors. A distance function like cosine is applied to rank results by similarity.

Feature Engineering - What and Why

Feature engineering is a crucial step in the machine learning pipeline where you create new, meaningful features or transform existing features to improve the performance of your predictive models. It involves selecting, modifying, or creating features from your raw data to make it more suitable for machine learning algorithms. Here's a more detailed overview of feature engineering: Why Feature Engineering? Feature engineering is essential for several reasons: Improving Model Performance: Well-engineered features can significantly boost the predictive power of your machine learning models. Handling Raw Data: Raw data often contains noise, missing values, and irrelevant information. Feature engineering helps in cleaning and preparing the data for analysis. Capturing Domain Knowledge: Domain-specific insights can be incorporated into feature creation to make the model more representative of the problem. Common Techniques and Strategies: 1. Feature Extraction: Transforming raw data...