Skip to main content

NoSQL vs Hadoop


 
Hadoop is a computing framework where as NoSQL is Not Only - SQL databases
Hadoop refers to an ecosystem of software packages, including MapReduce, HDFS, and a whole host of other software packages to support the import and export of data into and from HDFS (the Hadoop Distributed FileSystem).
NoSQL is referring to non-relational or at least non-SQL database solutions such as HBase (also a part of the Hadoop ecosystem), Cassandra, MongoDB, Riak, CouchDB, and many others.
Apache Hadoop is an open-source software framework that supports data-intensive distributed applications, licensed under the Apache v2 license.1 It enables applications to work with thousands of computational independent computers and petabytes of data.
In computing, NoSQL (mostly interpreted as "not only SQL"1) is a broad class of database management systems identified by its non-adherence to the widely used relational database management system model; that is, NoSQL databases are not primarily built on tables, and as a result, generally do not use SQL for data manipulation.
Like Hadoop, NoSQL is also developed for the distributed and parallel computing. The difference is Hadoop is not a database system but is a software ecosystem that allows for massively parallel computing. But, NoSQL is created especially as a database framework. 
They are not the same thing, but are related to data inten. Hadoop is an entire framework (that can be used with NoSQL DBMS like Oracle NoSQL).
 

Comments

Popular posts from this blog

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

What is the benefit of using Quantization in LLM

Quantization is a technique used in LLMs (Large Language Models) to reduce the memory requirements for storing and training the model parameters. It involves reducing the precision of the model weights from 32-bit floating-point numbers (FP32) to lower precision formats, such as 16-bit floating-point numbers (FP16) or 8-bit integers (INT8). Bottomline: You can use Quantization to reduce the memory footprint off the model during the training. The usage of quantization in LLMs offers several benefits: Memory Reduction: By reducing the precision of the model weights, quantization significantly reduces the memory footprint required to store the parameters. This is particularly important for LLMs, which can have billions or even trillions of parameters. Quantization allows these models to fit within the memory constraints of GPUs or other hardware accelerators. Training Efficiency: Quantization can also improve the training efficiency of LLMs. Lower precision formats require fewer computati...