Skip to main content

CAP Theoram


C - Consistency means a client should get same view of data at a given point in time irrespective of node it is looked up from. All the servers in the system will have the same data so anyone using the system will get the same copy regardless of which server answers their request.
A - Availability here means that any given request should receive a response [success/failure]. The system will always respond to a request (even if it's not the latest data or consistent across the system or just a message saying the system isn't working).
P - Partition Tolerance means the system remains operational despite node or other hardware failures, the system is tolerant enough to these kind of failures. The system continues to operate as a whole even if individual servers fail or can't be reached.
In distributed systems, consistency, availability and partition tolerance exists in a mutually dependent relationship. You cannot have all 3, for example, if you choose strict consistency you have to give away availability, therefore pick any two.
Theoretically it is impossible to fulfill all three requirements. Therefore current NoSQL databases follow the different combinations of the C,A,P from the CAP theorem.
CA – Single site cluster, therefore all nodes are always in contact. When a partition occurs, the systems blocks.
CP – Some data may be not accessible, but the rest is still consistent/accurate.
AP – System is still available under partitioning, but some of the data returned may be inaccurate.
 

Comments

Popular posts from this blog

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...

What is the benefit of using Quantization in LLM

Quantization is a technique used in LLMs (Large Language Models) to reduce the memory requirements for storing and training the model parameters. It involves reducing the precision of the model weights from 32-bit floating-point numbers (FP32) to lower precision formats, such as 16-bit floating-point numbers (FP16) or 8-bit integers (INT8). Bottomline: You can use Quantization to reduce the memory footprint off the model during the training. The usage of quantization in LLMs offers several benefits: Memory Reduction: By reducing the precision of the model weights, quantization significantly reduces the memory footprint required to store the parameters. This is particularly important for LLMs, which can have billions or even trillions of parameters. Quantization allows these models to fit within the memory constraints of GPUs or other hardware accelerators. Training Efficiency: Quantization can also improve the training efficiency of LLMs. Lower precision formats require fewer computati...