Skip to main content

CAP Theoram


C - Consistency means a client should get same view of data at a given point in time irrespective of node it is looked up from. All the servers in the system will have the same data so anyone using the system will get the same copy regardless of which server answers their request.
A - Availability here means that any given request should receive a response [success/failure]. The system will always respond to a request (even if it's not the latest data or consistent across the system or just a message saying the system isn't working).
P - Partition Tolerance means the system remains operational despite node or other hardware failures, the system is tolerant enough to these kind of failures. The system continues to operate as a whole even if individual servers fail or can't be reached.
In distributed systems, consistency, availability and partition tolerance exists in a mutually dependent relationship. You cannot have all 3, for example, if you choose strict consistency you have to give away availability, therefore pick any two.
Theoretically it is impossible to fulfill all three requirements. Therefore current NoSQL databases follow the different combinations of the C,A,P from the CAP theorem.
CA – Single site cluster, therefore all nodes are always in contact. When a partition occurs, the systems blocks.
CP – Some data may be not accessible, but the rest is still consistent/accurate.
AP – System is still available under partitioning, but some of the data returned may be inaccurate.
 

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

How are vector databases used?

  Vector Databases Usage: Typically used for vector search use cases such as visual, semantic, and multimodal search. More recently, they are paired with generative AI text models for conversational search experiences. Development Process: Begins with building an embedding model designed to encode a corpus (e.g., product images) into vectors. The data import process is referred to as data hydration. Application Development: Application developers utilize the database to search for similar products. This involves encoding a product image and using the vector to query for similar images. k-Nearest Neighbor (k-NN) Indexes: Within the model, k-nearest neighbor (k-NN) indexes facilitate efficient retrieval of vectors. A distance function like cosine is applied to rank results by similarity.