Skip to main content

Now AWS ELB will come with Static IP Address



AWS announced Network Load Balancer for the Elastic Load Balancing service designed to handle millions of requests per second while maintaining ultra-low latencies. This new load balancer is optimized to handle volatile traffic patterns while using a single static IP address per Availability Zone.



Static IP Addresses – Each Network Load Balancer provides a single IP address for each VPC subnet in its purview. If you have targets in a subnet in us-west-2a and other targets in a subnet in us-west-2c, NLB will create and manage two IP addresses (one per subnet); connections to that IP address will spread traffic across the instances in the subnet. You can also specify an existing Elastic IP for each subnet for even greater control. With full control over your IP addresses, Network Load Balancer can be used in situations where IP addresses need to be hard-coded into DNS records, customer firewall rules, and so forth.

Comments

Popular posts from this blog

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

What is the benefit of using Quantization in LLM

Quantization is a technique used in LLMs (Large Language Models) to reduce the memory requirements for storing and training the model parameters. It involves reducing the precision of the model weights from 32-bit floating-point numbers (FP32) to lower precision formats, such as 16-bit floating-point numbers (FP16) or 8-bit integers (INT8). Bottomline: You can use Quantization to reduce the memory footprint off the model during the training. The usage of quantization in LLMs offers several benefits: Memory Reduction: By reducing the precision of the model weights, quantization significantly reduces the memory footprint required to store the parameters. This is particularly important for LLMs, which can have billions or even trillions of parameters. Quantization allows these models to fit within the memory constraints of GPUs or other hardware accelerators. Training Efficiency: Quantization can also improve the training efficiency of LLMs. Lower precision formats require fewer computati...