Skip to main content

Where we need SFTP and MFT?

It depends on the security / risk appetite of the organization.

FTP servers, and the more secure SFTP Server software, perform 2 basic tasks:  “Put” and “Get.” You can put files on the FTP Server or get files from the FTP Server. If security is not a concern, FTP Server software is an easy and inexpensive way to accomplish this.

If you have remote employees who need to upload non-confidential reports, or if you want to allow your customers to download white papers and documentation, an FTP Server works well for this purpose.

If you are exchanging non-sensitive data with business partners, and the partner requires FTP or SFTP, you can quickly set up a server that will accept their data transfer.

if you handle credit card data, you will need to be PCI compliant and will want reporting tools to assure ongoing compliance. Medical records require HIPAA compliance. And overall security policies and practices are becoming a great focus in all businesses. This is all beyond the scope of basic “put/get” functionality. There MFT would be ideal. SFTP / FTP will not serve the purpose.


 

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

How are vector databases used?

  Vector Databases Usage: Typically used for vector search use cases such as visual, semantic, and multimodal search. More recently, they are paired with generative AI text models for conversational search experiences. Development Process: Begins with building an embedding model designed to encode a corpus (e.g., product images) into vectors. The data import process is referred to as data hydration. Application Development: Application developers utilize the database to search for similar products. This involves encoding a product image and using the vector to query for similar images. k-Nearest Neighbor (k-NN) Indexes: Within the model, k-nearest neighbor (k-NN) indexes facilitate efficient retrieval of vectors. A distance function like cosine is applied to rank results by similarity.