Skip to main content

Different kind of testing

Unit Testing
Unit testing is the testing of an individual unit or group of related units. It falls under the class of white box testing. It is often done by the programmer to test that the unit he/she has implemented is producing expected output against given input.
Integration Testing
Integration testing is testing in which a group of components are combined to produce output. Also, the interaction between software and hardware is tested in integration testing if software and hardware components have any relation. It may fall under both white box testing and black box testing. 
Functional Testing
Functional testing is the testing to ensure that the specified functionality required in the system requirements works. It falls under the class of black box testing.
System Testing
System testing is the testing to ensure that by putting the software in different environments (e.g., Operating Systems) it still works. System testing is done with full system implementation and environment. It falls under the class of black box testing. 
Stress Testing
Stress testing is the testing to evaluate how system behaves under unfavorable conditions. Testing is conducted at beyond limits of the specifications. It falls under the class of black box testing. 
Performance Testing
Performance testing is the testing to assess the speed and effectiveness of the system and to make sure it is generating results within a specified time as in performance requirements. It falls under the class of black box testing. 
Usability Testing
Usability testing is performed to the perspective of the client, to evaluate how the GUI is user-friendly? How easily can the client learn? After learning how to use, how proficiently can the client perform? How pleasing is it to use its design? This falls under the class of black box testing.
Acceptance Testing
Acceptance testing is often done by the customer to ensure that the delivered product meets the requirements and works as the customer expected. It falls under the class of black box testing.
Regression Testing
Regression testing is the testing after modification of a system, component, or a group of related units to ensure that the modification is working correctly and is not damaging or imposing other modules to produce unexpected results. It falls under the class of black box testing.
Beta Testing
Beta testing is the testing which is done by end users, a team outside development, or publicly releasing full pre-version of the product which is known as beta version. The aim of beta testing is to cover unexpected errors. It falls under the class of black box testing.

Comments

Popular posts from this blog

How are vector databases used?

  Vector Databases Usage: Typically used for vector search use cases such as visual, semantic, and multimodal search. More recently, they are paired with generative AI text models for conversational search experiences. Development Process: Begins with building an embedding model designed to encode a corpus (e.g., product images) into vectors. The data import process is referred to as data hydration. Application Development: Application developers utilize the database to search for similar products. This involves encoding a product image and using the vector to query for similar images. k-Nearest Neighbor (k-NN) Indexes: Within the model, k-nearest neighbor (k-NN) indexes facilitate efficient retrieval of vectors. A distance function like cosine is applied to rank results by similarity.

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat <- colindex="colIndex," endrow="23," file="NGAP.xlsx" header="TRUE)</p" read.xlsx="" sheetindex="1," startrow="18,"> Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip&

Feature Engineering - What and Why

Feature engineering is a crucial step in the machine learning pipeline where you create new, meaningful features or transform existing features to improve the performance of your predictive models. It involves selecting, modifying, or creating features from your raw data to make it more suitable for machine learning algorithms. Here's a more detailed overview of feature engineering: Why Feature Engineering? Feature engineering is essential for several reasons: Improving Model Performance: Well-engineered features can significantly boost the predictive power of your machine learning models. Handling Raw Data: Raw data often contains noise, missing values, and irrelevant information. Feature engineering helps in cleaning and preparing the data for analysis. Capturing Domain Knowledge: Domain-specific insights can be incorporated into feature creation to make the model more representative of the problem. Common Techniques and Strategies: 1. Feature Extraction: Transforming raw data