Skip to main content

What are different statistical tests used for Feature selection in Machine Learning?

 

Feature TypeTest NameDescriptionUse Case
NumericalPearson's Correlation CoefficientDetermines the strength and direction of linear relationships between numerical variables. High absolute values indicate strong correlations.Measure linear correlation
NumericalMutual InformationMeasures the amount of information gained about one variable by observing another. Useful for feature selection when dealing with numerical data.Measure dependence between variables
NumericalANOVAAnalyzes the difference in means among multiple groups. Helpful for selecting numerical features with significant differences in group means.Compare means between multiple groups
Numericalt-testAssesses whether the means of two groups are statistically different. Useful for binary classification tasks.Compare means between two groups
CategoricalChi-Square TestDetermines if two categorical variables are independent or related. Useful for feature selection with categorical data.Test independence of categorical variables
CategoricalFisher's Exact TestTests the association between two categorical variables in 2x2 contingency tables. Applicable when sample sizes are small.Test independence in 2x2 contingency tables
CategoricalGini ImportanceMeasures how often a feature is used to split data in decision tree algorithms. Higher values indicate more important features.Assess feature importance in decision trees
CategoricalInformation GainCalculates the reduction in entropy (uncertainty) achieved by using a feature to split data in decision trees or random forests.Measure reduction in entropy
CategoricalCramér's VQuantifies the association between two categorical variables in contingency tables. Values range from 0 (no association) to 1 (complete association).Measure association in contingency tables
CategoricalKendall's Tau and Spearman's Rank CorrelationEvaluate the strength and direction of monotonic relationships between ordinal or ranked data. Useful when data is not normally distributed.Measure rank correlation
CategoricalPoint-Biserial CorrelationAssesses the relationship between a binary target variable and a continuous or ordinal feature. Helps identify features with strong associations.Measure correlation with binary target

Comments

Popular posts from this blog

What is the difference between Elastic and Enterprise Redis w.r.t "Hybrid Query" capabilities

  We'll explore scenarios involving nested queries, aggregations, custom scoring, and hybrid queries that combine multiple search criteria. 1. Nested Queries ElasticSearch Example: ElasticSearch supports nested documents, which allows for querying on nested fields with complex conditions. Query: Find products where the product has a review with a rating of 5 and the review text contains "excellent". { "query": { "nested": { "path": "reviews", "query": { "bool": { "must": [ { "match": { "reviews.rating": 5 } }, { "match": { "reviews.text": "excellent" } } ] } } } } } Redis Limitation: Redis does not support nested documents natively. While you can store nested structures in JSON documents using the RedisJSON module, querying these nested structures with complex condi...

Training LLM model requires more GPU RAM than storing same LLM

Storing an LLM model and training the same model both require memory, but the memory requirements for training are typically higher than just storing the model. Let's dive into the details: Memory Requirement for Storing the Model: When you store an LLM model, you need to save the weights of the model parameters. Each parameter is typically represented by a 32-bit float (4 bytes). The memory requirement for storing the model weights is calculated by multiplying the number of parameters by 4 bytes. For example, if you have a model with 1 billion parameters, the memory requirement for storing the model weights alone would be 4 GB (4 bytes * 1 billion parameters). Memory Requirement for Training: During the training process, additional components use GPU memory in addition to the model weights. These components include optimizer states, gradients, activations, and temporary variables needed by the training process. These components can require additional memory beyond just storing th...

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...