Skip to main content

AWS EBS Incremental snapshot backup facts

AWS actually manages the metadata of snapshot backups. 

After writing data to an Amazon EBS volume, you can periodically create a snapshot of the volume to use as a baseline for new volumes or for data backup.

If you make periodic snapshots of a volume, the snapshots are incremental so that only the blocks on the device that have changed after your last snapshot are saved in the new snapshot.

Even though snapshots are saved incrementally, the snapshot deletion process is designed so that you need to retain only the most recent snapshot in order to restore the volume.

Example:

Create a file a.log on Monday and take a snapshot backup name - snap-monday

Create a second file b.log on Tuesday and take a snapshot backup name - snap-tuesday

Create the third file c.log on Wednesday and take a snapshot backup name - snap-wednesday

You don't need to retain all the three snapshots to restore back from latest snapshot (c.log ).

You can restore entire thing from the last snapshot backup.

Comments

Popular posts from this blog

Error: could not find function "read.xlsx" while reading .xlsx file in R

Got this during the execution of following command in R > dat Error: could not find function "read.xlsx" Tried following command > install.packages("xlsx", dependencies = TRUE) Installing package into ‘C:/Users/amajumde/Documents/R/win-library/3.2’ (as ‘lib’ is unspecified) also installing the dependencies ‘rJava’, ‘xlsxjars’ trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/rJava_0.9-8.zip' Content type 'application/zip' length 766972 bytes (748 KB) downloaded 748 KB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsxjars_0.6.1.zip' Content type 'application/zip' length 9485170 bytes (9.0 MB) downloaded 9.0 MB trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.2/xlsx_0.5.7.zip' Content type 'application/zip' length 400968 bytes (391 KB) downloaded 391 KB package ‘rJava’ successfully unpacked and MD5 sums checked package ‘xlsxjars’ successfully unpacked ...

What is Tensor Parallelism and relationship between Buffer and GPU

  Tensor Parallelism in GPU Tensor parallelism is a technique used to distribute the computation of large tensor operations across multiple GPUs or multiple cores within a GPU .   It is an essential method for improving the performance and scalability of deep learning models, particularly when dealing with very large models that cannot fit into the memory of a single GPU. Key Concepts Tensor Operations : Tensors are multidimensional arrays used extensively in deep learning. Common tensor operations include matrix multiplication, convolution, and element-wise operations. Parallelism : Parallelism involves dividing a task into smaller sub-tasks that can be executed simultaneously. This approach leverages the parallel processing capabilities of GPUs to speed up computations. How Tensor Parallelism Works Splitting Tensors : The core idea of tensor parallelism is to split large tensors into smaller chunks that can be processed in parallel. Each chunk is assigned to a different GP...

What is the benefit of using Quantization in LLM

Quantization is a technique used in LLMs (Large Language Models) to reduce the memory requirements for storing and training the model parameters. It involves reducing the precision of the model weights from 32-bit floating-point numbers (FP32) to lower precision formats, such as 16-bit floating-point numbers (FP16) or 8-bit integers (INT8). Bottomline: You can use Quantization to reduce the memory footprint off the model during the training. The usage of quantization in LLMs offers several benefits: Memory Reduction: By reducing the precision of the model weights, quantization significantly reduces the memory footprint required to store the parameters. This is particularly important for LLMs, which can have billions or even trillions of parameters. Quantization allows these models to fit within the memory constraints of GPUs or other hardware accelerators. Training Efficiency: Quantization can also improve the training efficiency of LLMs. Lower precision formats require fewer computati...